Introduction

Experiment

-- It is a 2 populations Matching Pennies Game

	L	R
\overline{U}	5,0	0,5
D	0,5	5,0

Only 1 treatment with 12 sessions.

8 subjects/Session (4 Up-Down and 4 Right-Left, 2 pop.)

Repeat 300 periods/Session

Anonymously in pairs in random matching

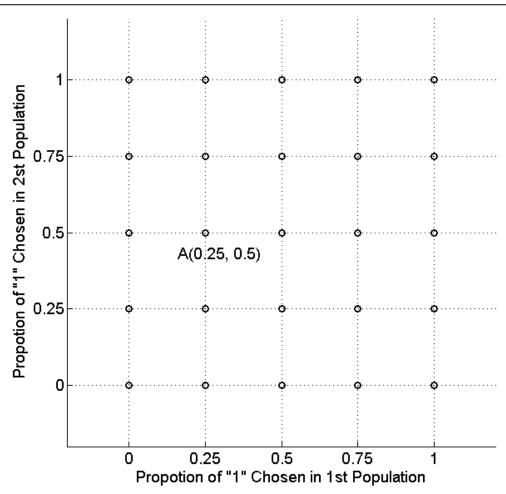
Last 1.5 – 2 hours each session

Mean income: 57.5 RMB/subject

In experimental Social science laboratory, ZJU

Conducted date: Oct.24-25, 2010

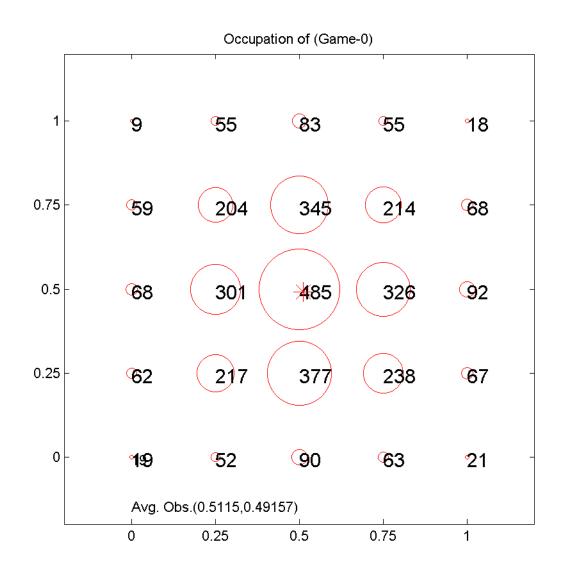
Observation of Distribution



Example:

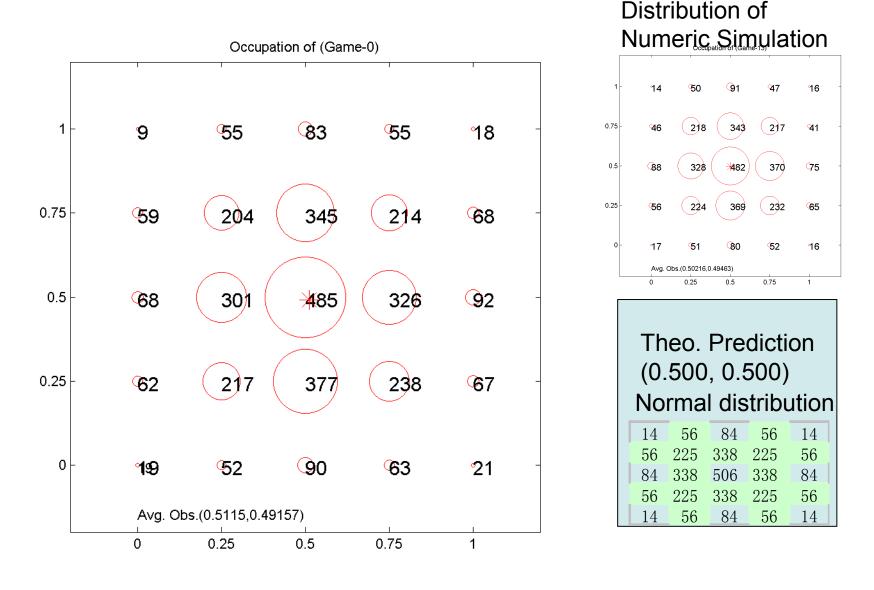
An observation at A (0.25,0.5) state means that for the 1*st* population, 0.25 of them choose 1 strategy and 0.75 choose 0 strategy; at the same time, for the 2*nd* population, two strategies are chosen half to half.

12 sessions
300 rounds/session
= **3600 obs**.
In the 5x5 lattices



Result(0)

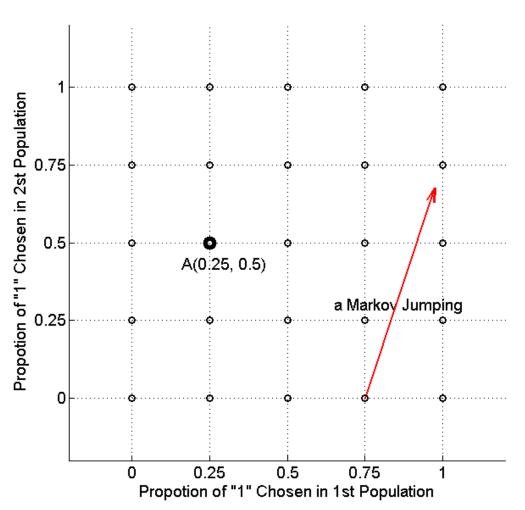
Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,



Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,

What we have not seen yet?

Observation of Markov Jumping



Example:

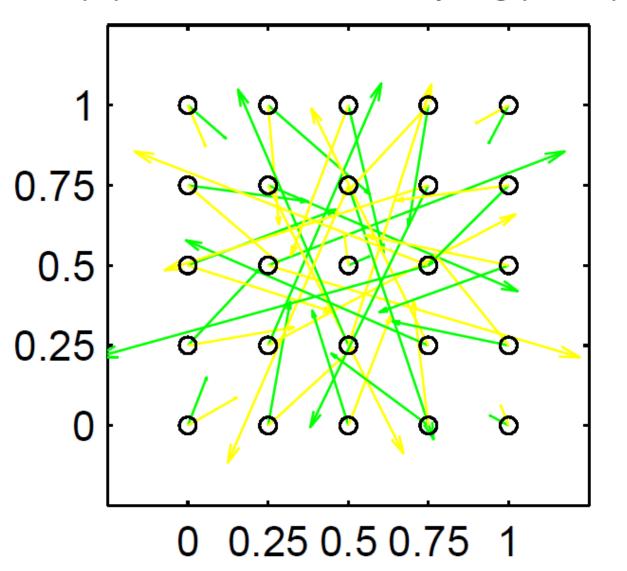
An observation of Markov Jumping Arrow here is a example for a Markov jumping, from state (0.75, 0) to its next round's state (1, 0.75).

12 sessions
300 rounds/session
have 3600 – 12
= 3588 obs.
Of Markov Jumping
In the 5x5 lattices

						Tabl	e 2: M	arkov J	umpin	g Matri	x of th	e 2 × 2	games	with p	ayoff n	natric	(5, 0)	(0, 5);	(0, 5)(5, 0)]						
	t + 1	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4
t		0	0	0	0	0	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	4
0	0	1	0	0	1	0	0	0	1	0	0	1	1	2	0	0	2	4	1	1	0	0	2	0	1	1
1	0	0	0	1	0	0	2	5	5	3	0	3	10	5	1	0	5	4	5	1	0	0	1	0	1	0
2	0	1	3	2	2	0	4	12	14	4	0	3	17	10	2	1	2	7	4	2	0_	0	0	0	0	0
3	0	1	-3-	2	1	1	2	8	14	-6	-0-	1	-7	2	-5	1	1	-3	2	0	1	0	2	-0-	-0 -	0
4	0	0	2	3	3	0	1	2	3	4	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0
0	1	0	0	1	0	0	2	2	3	0	0	4	8	9	2	0	8	12	10	0	0	0	0	0	0	1
1	1	1	3	1	1	2	4	15	23	11	1	8	27	31	8	1	8	22	22	7	1	3	10	5	2	0
2	1	5	8	7	6	1	14	37	40	23	2	10	44	56	27	7	9	18	36	11	2	1	3	5	5	0
3	1	5	6	13	6	3	7	25	39	11	2	9	19	28	21	3	1	4	20	9	2	0	2	2	0	1
4	1	2	3	10	2	0	0	5	10	8	4	0	5	5	5	3	0	1	1	2	1	0	0	0	0	0
0	2	0	2	0	0	0	2	3	2	0	0	1	8	7	2	1	4	9	8	6	0	1	3	6	2	1
1	2	0	2	2	1	3	5	16	26	8	3	6	32	37	20	8	6	33	47	16	5	2	7	11	5	0
2	2	0	8	18	5	3	6	28	48	24	5	8	41	76	50	13	3	30	55	35	6	0	5	10	6	2
3	2	3	6	11	8	4	8	26	41	37	13	4	18	46	36	4	3	9	22	14	5	0	4	3	1	0
4	2	0	3	4	6	1	0	6	13	17	3	0	6	12	7	5	0	2	4	2	0	0	0	0	1	0
0	3	0	0	0	0	0	1	1	3	2	0	1	3	4	5	0	2	3	10	11	1	0	3	5	3	1
1	3	0	0	2	2	0	1	3	15	7	2	4	16	28	21	5	1	15	30	23	4	1	2	14	8	0
2	3	0	0	8	5	0	1	12	27	17	7	3	23	65	45	13	2	14	34	32	14	0	4	9	8	2
3	3	0	2	4	6	1	1	5	27	30	12	1	9	24	35	11	1	5	12	9	12	0	0	4	2	1
4	3	0	0	0	5	1	1	2	10	7	3	0	0	9	12	4	0	1	4	7	0	0	0	1	1	0
0	4	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	1	0	0	1	1	2	0
1	4	0	0	0	2	0	0	0	1	3	2	1	0	5	9	0	0	2	6	5	5	0	3	4	3	4
2	4	0	0	1	0	0	0	4	4	6	4	0	3	17	4	5	1	4	8	14	2	1	2	2	1	0
3	4	0	1	0	0	1	0	1	6	7	2	0	2	6	10	5	0	3	3	3	4	0	0	0	1	0
4	4	0	0	0	1	0	0	0	3	2	2	0	1	2	0	1	0	0	2	2	1	0	0	0	1	0

Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,

(a)Full Markov Jumping(1:80)

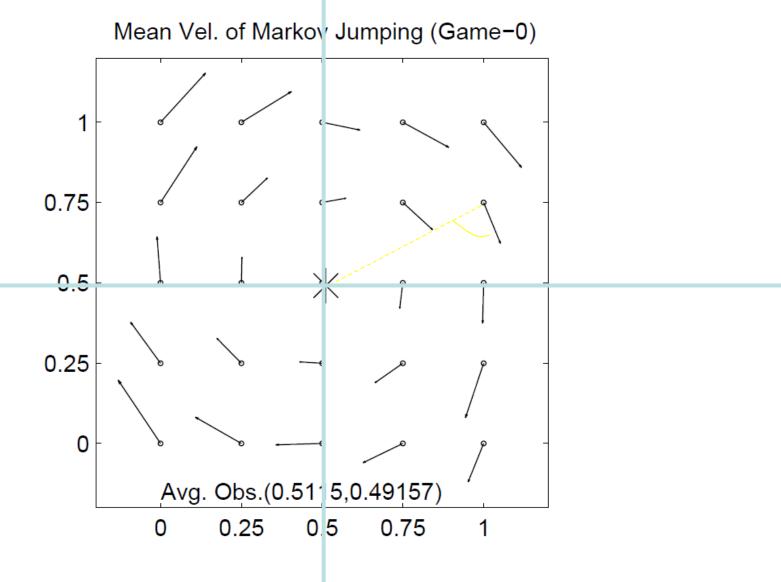


Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,

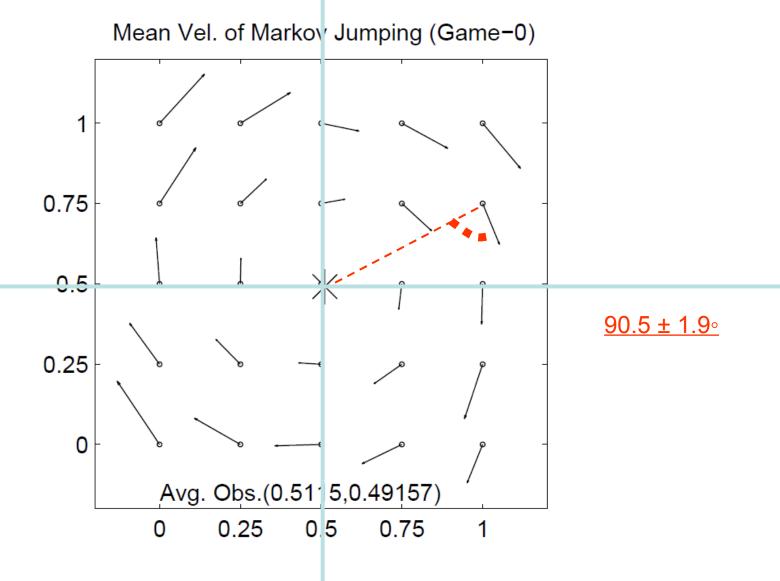
						Tabl	e 2: M	arkov J	Tumpin	g Matri	ix of th	e 2 × 2	2 games	with r	oayoff r	natric	[(5, 0)	(0, 5);	(0, 5)(5, 0)1						(i'
	t + 1	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4	0	1	2	3	., `
t		0	0	0	0	0	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3	4	4	4	4	7,
0	0	1	0	0	1	0	0	0	1	0	0	1	1	2	0	0	2	4	1	1	0	0	2	0	1	$\overline{}$
1	0	0	0	1	0	0	2	5	5	3	0	3	10	5	1	0	5	4	5	1	0	0	1	0	1	0
2	0	1	3	2	2	0	4	12	14	4	0	3	17	10	2	1	2	7	4	2	Q.	0	0	0	0	0
3	0	1	3	2	1	1	2	8	14	6	0	1	7	2	-5	1	1	3	2	0	1	0	2	0	0	-0
4	0	0	2	3	3	0	1	2	3	4	0	0	1	0	0	1	0	0	0	0	Ü	0	1	0	0	0
0	1	0	0	1	0	0	2	2	3	0	0	4	8	9	2	0	8	12	10	0	0	0	0	0	0	1
1	1	1	3	1	1	2	4	15	23	11	1	8	27	31	8	1	8	22	22	7	1	3	10	5	2	0
2	1	5	8	7	6	1	14	37	40	23	2	10	44	56	27	7	9	18	36	11	2	1	3	5	5	0
3	1	5	6	13	6	3	7	25	39	11	2	9	19	28	21	3	1	4	20	9	2	0	2	2	0	1
4	1	2	3	10	2	0	0	5	10	8	4	0	5	5	5	3	0	1	1	2	1	0	0	0	0	0
0	2	0	2	0	0	0	2	3	2	0	0	1	8	7	2	1	4	9	8	6	0	1	3	6	2	1
1	2	0	2	2	1	3	5	16	26	8	3	6	32	37	20	8	6	33	47	16	5	2	7	11	5	0
2	2	0	8	18	5	3	6	28	48	24	5	8	41	76	50	13	3	30	55	35	6	0	5	10	6	2
3	2	3	A					7	/				8		A					7					1	0
4	2		A_{l}	(; ;	١	SG:	1 1	n.J	G .	<i>-</i> (i	(i)	<i>il</i>	\	1	$\mathbf{A}_{(i)}$	' i')_	→ (i	i	J (i)	' i')	$\langle i \rangle$	i	1	0
0	3			ι,j)_	7 (<i>i</i>	, J) •	(ι, j)	"	7(1	$,_{J}$) 3		(1	$,_{J}$,	$\gamma(\iota,$	J)	(1	$,_{J}$,	$(\iota,$	J)	3	1
1	3	(0	_	-	0	:	10	27		-		.6	28	21	2	1	15	30	23	4	1	2	14	8	0
2	3	0	0	8	5	0	1	12	27	17	7	3	23	65	45	13	2	14	34	32	14	0	4	9	8	2
3	3	0	2	4	6	1	1	5	27	30	12	1	9	24	35	11	1	5	12	9	12	0	0	4	2	1
4	3	0	0	0	5	1	1	2	10	7	3	0	0	9	12	4	0	1	4	7	0	0	0	1	1	0
0	4	0	0	0	0	0	0	0	0	0	0	0	1	1 5	1	0	0	0	1	1	0	0	1	1	2	0
1	4	0	0	0	2	0	0	0	1	3	2	1	0	5	9	0	0	2	6	5	5	0	3	4	3	4
2	4	0	0	1	0	0	0	4	4	6	4	0	3	17	4	5	1	4	8	14	2	1	2	2	1	0
3 4	4	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0	0	0	0	0	1 0	6 3	7 2	2 2	0	2	6 2	10 0	5 1	0	3 0	3	3 2	1	0	0	0	1	0
-4	4	U	U	U	1	U	U	U	3			U	1		U	1	U	U			1	U	U	U	1	
G	<i>i</i> 3				_	_															'					

Xu & Wang, Bert $\vec{J}_{(i,j)\rightarrow(i',j')} = (i'-i)\vec{e}_1 + (j'-j)\vec{e}_2$ amen Workshop,

$$\vec{v}_{(i,j)} = \frac{\sum_{(i',j')} \left(A_{(i,j)\to(i',j')} \vec{J}_{(i,j)\to(i',j')} + A_{(i',j')\to(i,j)} \vec{J}_{(i',j')\to(i,j)} \right)}{\sum_{(i',j')} A_{(i,j)\to(i',j')} + \sum_{(i',j')} A_{(i',j')\to(i,j)}}$$
(1)

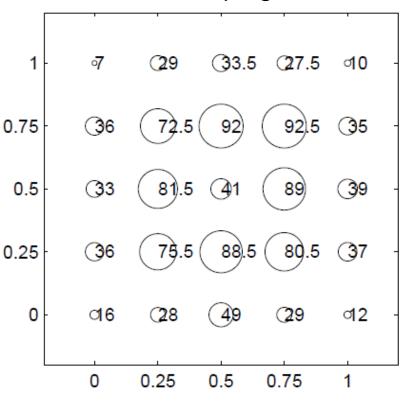


Linear Reg. Speed/Radius, cof.= 0.2714, S.E. = 0.0013, p = 0.000) Mean Angular = 90.5 ± 1.9



Linear Reg. Speed/Radius, cof.= 0.2714, S.E. = 0.0013, p = 0.000) Mean Angular = 90.5 ± 1.9

Unbalanced Jumping Distribution



Ring-Mountain Pattern

$$f_{(i,j)} = \frac{1}{2} \sum_{(i',j')} |A_{(i',j')\to(i,j)} - A_{(i,j)\to(i',j')}|$$

Strictly Stationary Process Test

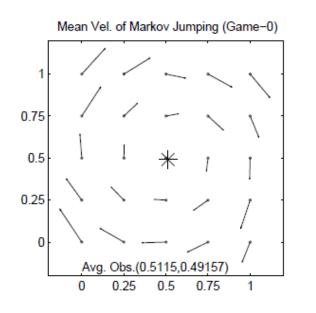
TABLE IV: Occupation unbalanced observation within strategy states in 12 sessions and t - test(p < 0.01) result

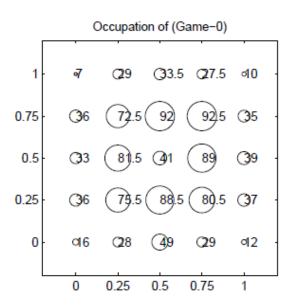
GameID	ES	AS	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12	Reject0	p-value	Lbound	Ubound	method
4	22	999	-2	-2	-6	-3	1	1	-6	-3	-6	1	-3	-4	1	0.004	-4.34	-0.98	ss61320
4	12	999	6	1	2	-8	4	6	7	5	4	7	8	8	1	0.007	1.353	6.980	ss100200
5	20	999	0	1	1	1	0	1	0	0	1	0	1	0	1	0.006	0.168	0.831	ss100200

Density of state not changing during any [t0, t1]

Result

- In our data, we show
- (1) the velocity field of Markov jumping
- (2) the distribution of unbalanced jumping form a ring-mountain shape





Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,

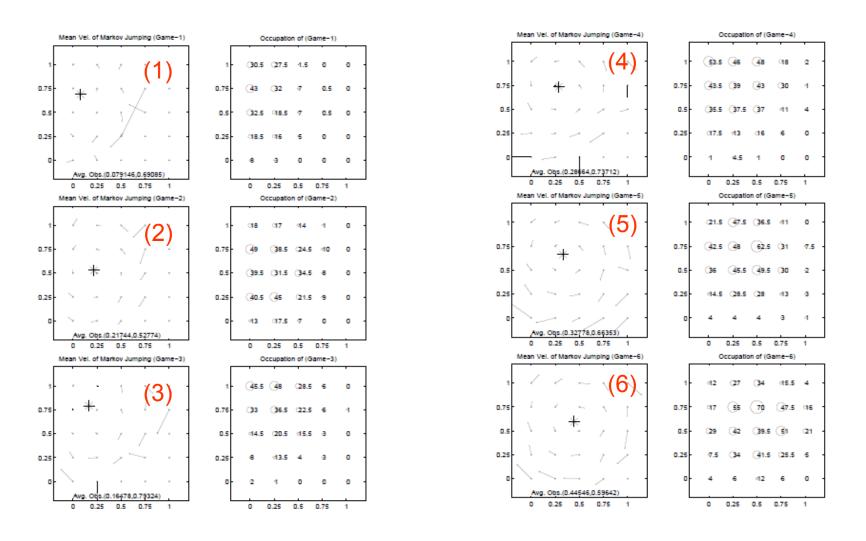
Support Data

- 1, Seleten & Chmura AER(2008)
 - Stationary Concepts for Experimental 2x2-Games
- 2, Cason, Friedman & Wagener(2005)
- The dynamics of price dispersion, or Edgeworth variations

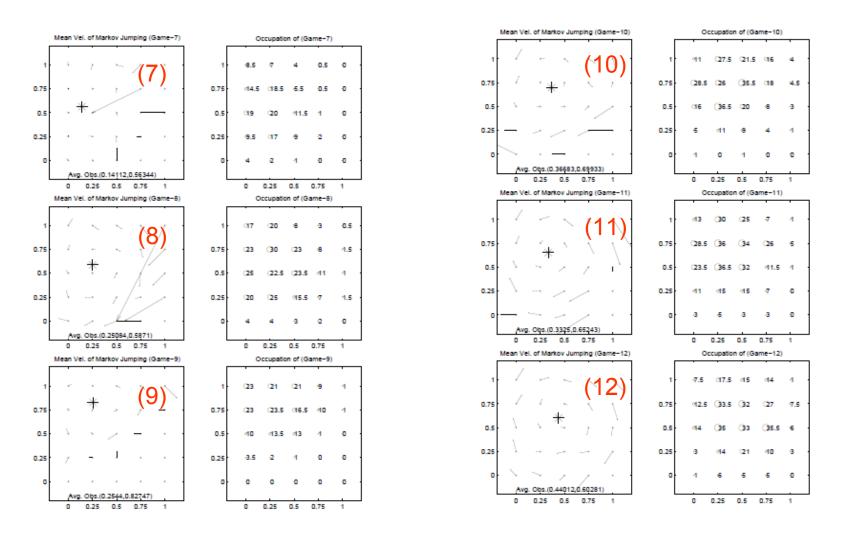
Stationary Concepts for Experimental 2x2-Games

By Reinhard Selten and Thorsten Chmura*

Table 3: I	Payoff m	atrix of Se	elten and Chr	nura 2 × 2	2 games
(1)	L	R	(7)	L	R
$\boldsymbol{\mathit{U}}$	10,8	0, 18	$\boldsymbol{\mathit{U}}$	10, 12	4, 22
D	9,9	10,8	D	9,9	14, 8
(2)	L	R	(8)	L	R
$\boldsymbol{\mathit{U}}$	9,4	0, 13	\boldsymbol{U}	9,7	3, 16
D	6,7	8,5	D	6,7	11,5
(3)	L	R	(9)	L	R
$\boldsymbol{\mathit{U}}$	8,6	0, 14	$\boldsymbol{\mathit{U}}$	8,9	3, 17
D	7,7	10,4	D	7,7	13,4
(4)	L	R	(10)	L	R
$\boldsymbol{\mathit{U}}$	7,4	0, 11	\boldsymbol{U}	7,6	2, 13
D	5,6	9,2	D	5,6	11, 2
(5)	L	R	(11)	L	R
$\boldsymbol{\mathit{U}}$	7,2	0,9	$\boldsymbol{\mathit{U}}$	7,4	2, 11
D	4, 5	8, 1	D	4,5	10, 1
(6)	L	R	(12)	L	R
$\boldsymbol{\mathit{U}}$	7, 1	1,7	$oldsymbol{U}$	7,3	3,9
D	3,5	8,0	D	3,5	10,0



Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,



Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,

Table 1 Estimated transition matrices for *all* periods in experienced sessions

Observ.		Search	cost = 20	$q = \frac{1}{3}$		Observ.		Search	$\cos t = 20$	$q = \frac{2}{3}$	
		Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}	Q_4^{t+1}			Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}	Q_4^{t+1}
82	Q_1^t	0.73	0.11	0.09	0.07	83	Q_1^t	0.75	0.10	0.06	0.10
70	Q_2^i	0.24	0.59	0.13	0.04	63	Q_2^i	0.22	0.62	0.08	0.08
65	Q_3^t	0.08	0.25	0.58	0.09	75	Q_3^i	0.13	0.12	0.59	0.16
71	Q_4^t	0.03	0.11	0.14	0.72	61	Q_4^i	0.02	0.11	0.36	0.51
Observ.		Search	cost = 60	$q = \frac{1}{3}$		Observ.		Search	cost = 60	$q = \frac{2}{3}$	
		Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}	Q_4^{t+1}			Q_1^{t+1}	Q_2^{t+1}	Q_3^{t+1}	Q_4^{t+1}
71	Q_1^t	0.63	0.18	0.07	0.11	74	Q_1^t	0.66	0.16	0.09	0.08
74	Q_2^t	0.24	0.55	0.14	0.07	71	Q_2^t	0.24	0.55	0.07	0.14
74	Q_3^t	0.04	0.24	0.62	0.09	71	Q_3^t	0.03	0.25	0.52	0.20
69	Q_4^t	0.14	0.06	0.16	0.64	72	Q_4^t	0.10	0.11	0.28	0.51

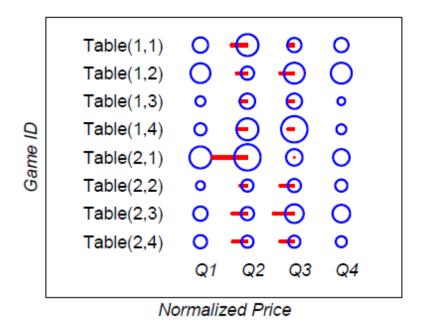


Figure 5: Velocity pattern in lattices for Game (1.1)-(2.4) respectively. game ID (a.b), a is the i.d. of Table, and b is the id of sub Table. Data from Cason's Transition Matrix in P815, Table 1 and Table 2 from Ref. Cason et al. (2005)

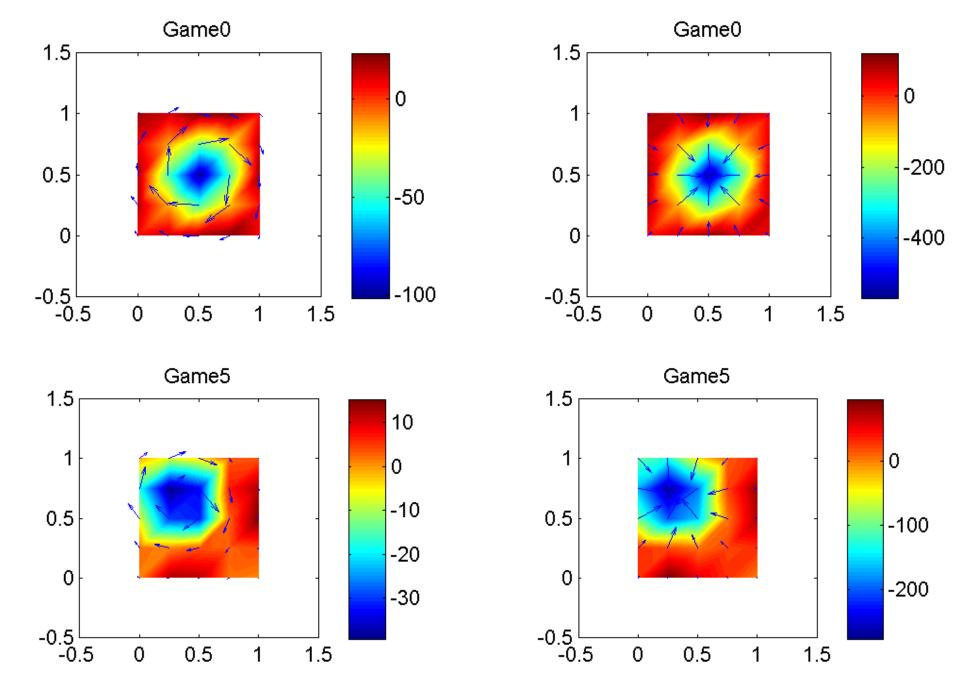
Conclusion

With laboratory experiments, we obtain (firstly?) a hidden order in systems usually called as "mixed strategy Nash equilibrium"

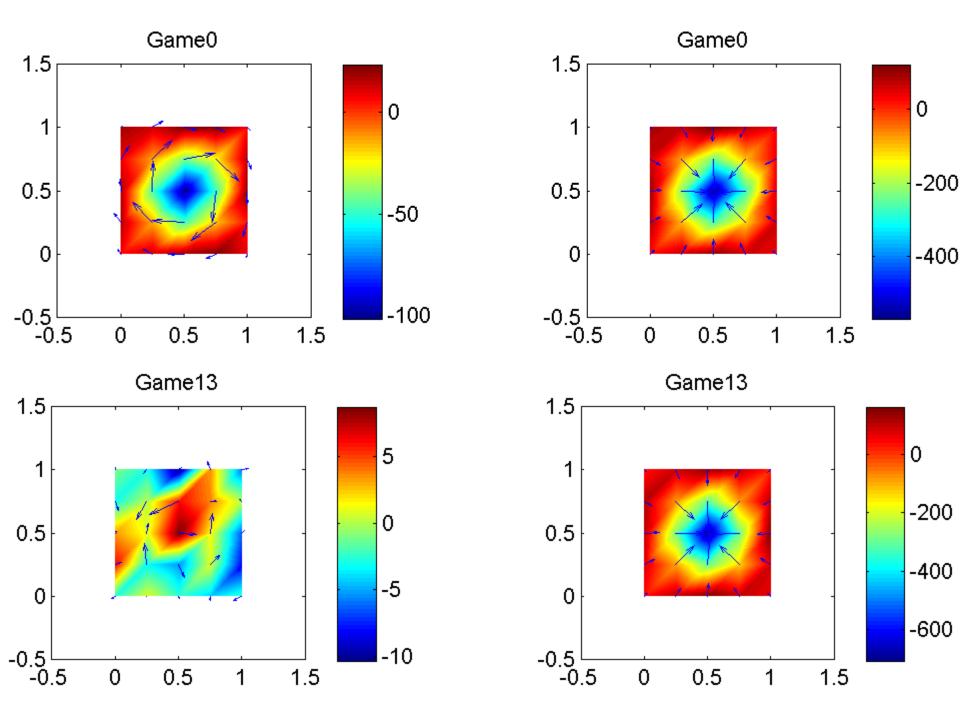
Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game

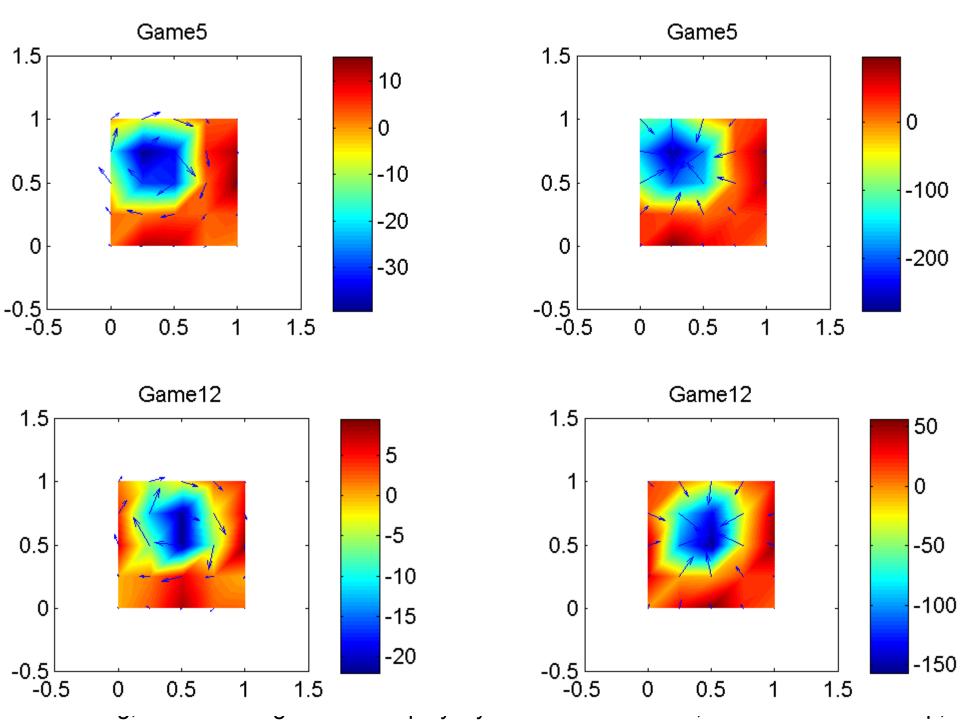
Bin Xu Zhijian Wang

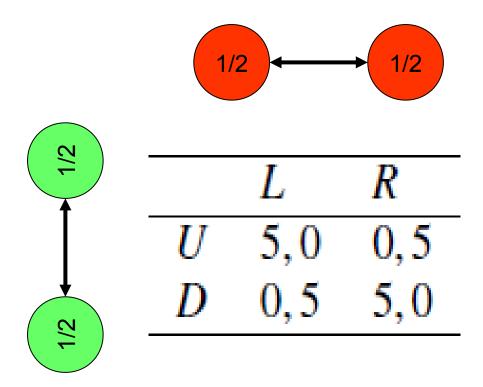
Dec 16, 2010 Xianmen, China



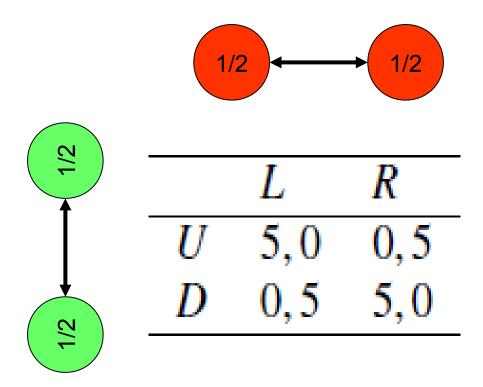
Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,



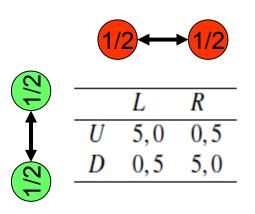


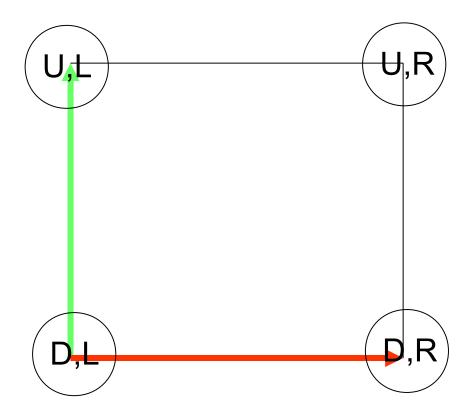


Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,

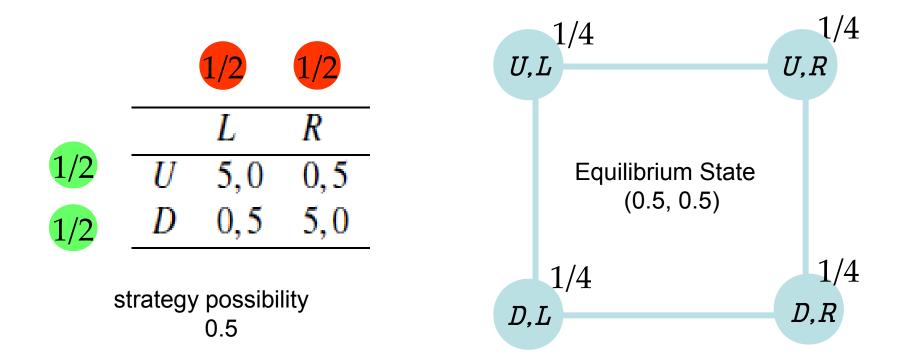


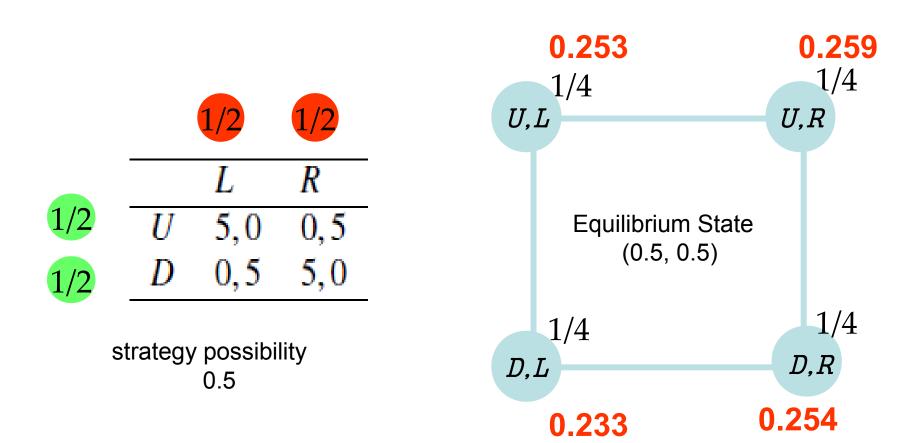
Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,



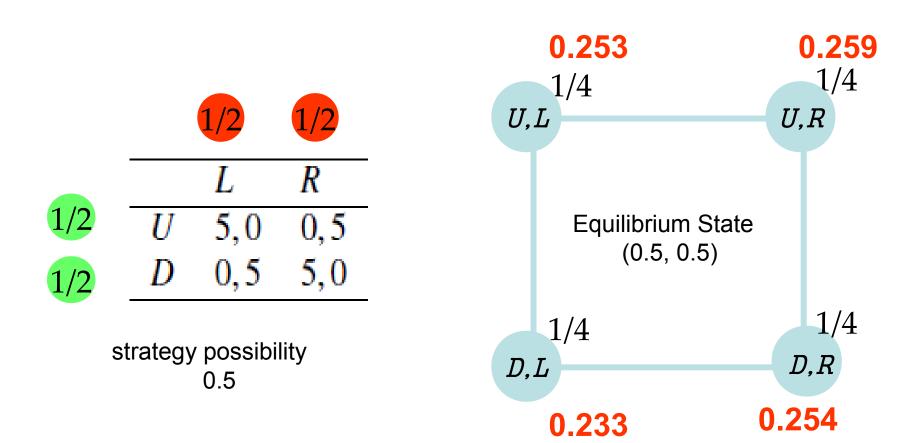


	L	R
\overline{U}	5,0	0,5
D	0, 5	5,0

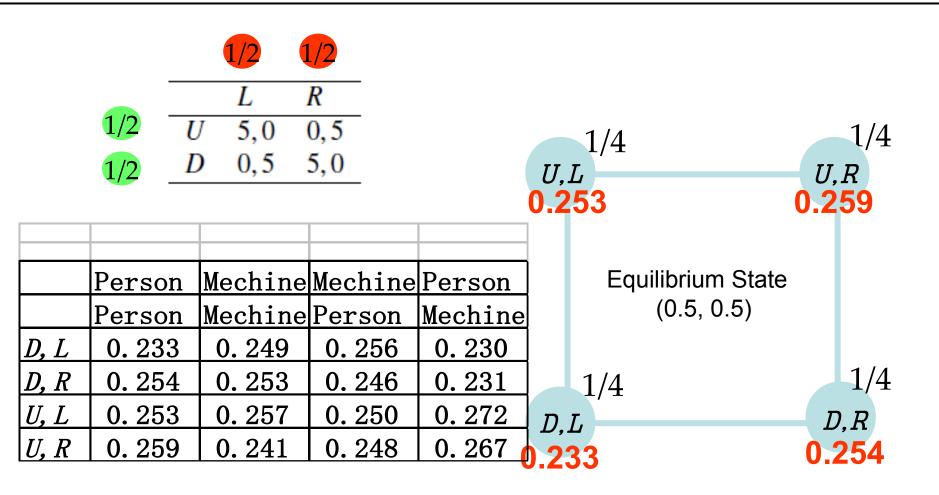




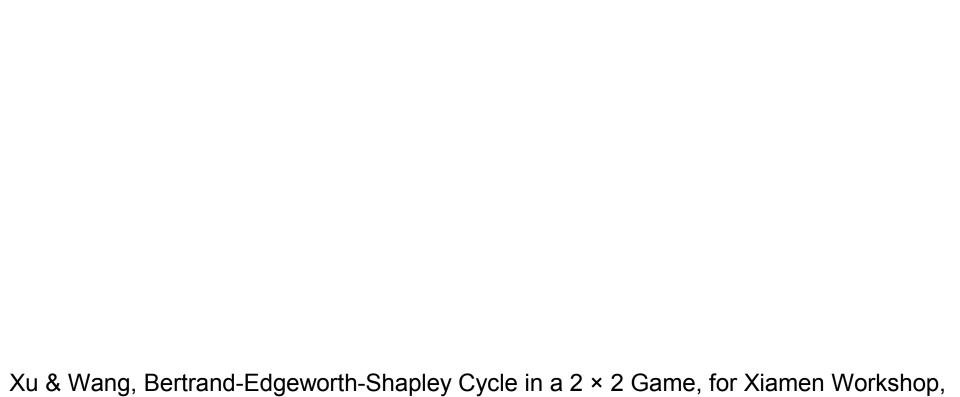
Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,



Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,



Xu & Wang, Bertrand-Edgeworth-Shapley Cycle in a 2 × 2 Game, for Xiamen Workshop,



Interface

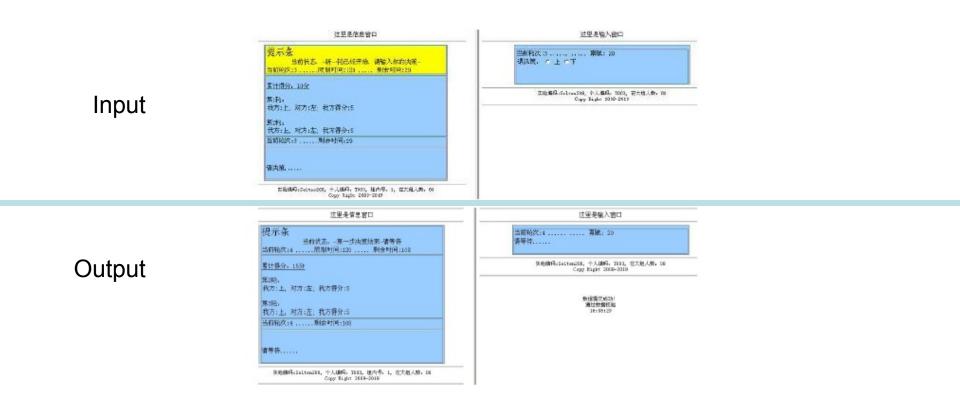


Figure 2: 实验界面图(1)输入界面; (2)响应界面